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Abstract
We calculate the grammatical complexity of the symbol sequences generated
from the Hénon map and the Lozi map using the recently developed methods
to construct the pruning front. When the map is hyperbolic, the language of
symbol sequences is regular in the sense of the Chomsky hierarchy and the
corresponding grammatical complexity takes finite values. It is found that
the complexity exhibits a self-similar structure as a function of the system
parameter, and the similarity of the pruning fronts is discussed as an origin of
such self-similarity. For non-hyperbolic cases, it is observed that the complexity
monotonically increases as we increase the resolution of the pruning front.

PACS numbers: 05.45.−a, 05.45.Ac

1. Introduction

Characterizing and measuring complexity is one of the central issues in the study of complex
systems. In particular, much work has been devoted to understanding the complexity of
dynamical systems situated between completely regular and fully random states. Various
definitions of complexity have so far been proposed in many fields such as information theory
and computer science, and they are employed for quantifying complexity. A series of research
is surveyed, for example, in [1].

Wolfram exploited for the first time the theory of formal languages, which was developed
by Chomsky, to study dynamical systems in his paper about cellular automata [2]. Since then,
this idea has been applied to the study especially on the complexity of one-dimensional
unimodal maps on an interval [3–13]. The Chomsky hierarchy consists of four levels
of languages: regular languages, context-free languages, context-sensitive languages and
recursively enumerable languages, from the bottom. The lower levels are contained in the
upper ones. It was shown in [5, 6] that if the kneading sequence of a unimodal map is either
periodic or eventually periodic, the language generated from the map is regular (i.e. in the
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lowest level of the Chomsky hierarchy [14]). After that, Xie and Wang proved that the converse
is also true [10, 11]. For unimodal maps, it was also proved that the language generated at
the period-doubling accumulation point is one in the level located between context-free and
context-sensitive [8, 9, 12]. Moreover, Xie et al have proposed a conjecture that unimodal
maps never generate proper context-free languages [12, 13].

On the other hand, it is a difficult task to carry out an analogous programme in higher
dimensional dynamical systems in general. This is because the construction of a proper
symbolic dynamics, which is necessary to apply the theory of languages, is not easy except for
the trivial horseshoe dynamics. The difficulty lies in the fact that there are no critical points
in generic higher dimensional maps. The itinerary of the critical point, i.e. the kneading
sequence, characterizes all the topological characters of a one-dimensional map. As
mentioned, the classification of complexity based on the theory of languages is done by
referring the character of the kneading sequences.

However, there are several recent examples of steady progresses made even in higher
dimensional cases: the idea of the pruning front, which was proposed in order to construct a
two-dimensional analogy of the kneading theory [15, 16], has not only been mathematically
formulated [17–19], but also a concrete algorithm to perform the proposed idea for the Lozi
map [20]:

La,b :

(
x

y

)
→

(
1 + by − a|x|

x

)

has been presented [17]. A heuristic algorithm to generate the pruning front for the Hénon
map [21]

Ha,b :

(
x

y

)
→

(
a + by − x2

x

)

has also been presented [22]. We note here that the latter algorithm can be applied to the
area-preserving case, |b| = 1.

These two maps are the simplest possible examples of higher dimensional problems. Thus
these results provide us with a promising opportunity to see how the complexity of higher
dimensional dynamics behaves and how the class of formal languages is related to the structure
of the pruning front in the symbol plane. The purpose of the present paper is to compute the
so-called grammatical complexity (GC) of such simple two-dimensional maps by employing
an explicit algorithm to construct the pruning front for the Hénon map [22] and the one for
the Lozi map [17]. GC is a quantity measuring the difficulty in describing the topological
structure of a map.

In particular, we will focus on the behaviour of GC as a function of the system parameter.
Our motivation originates from the numerical studies suggesting that there are infinitely many
parameter intervals where the map recovers hyperbolicity even after the destruction of the
horseshoe [23, 24]. In such a case, the language has only finitely many rules, and is regular.
By the definition of Wolfram [2], the complexity of a regular language is the number of states
of the minimal finite automaton equivalent to the language. So GC is a computable object if
a map has hyperbolic structure.

The paper is organized as follows. In the next section, we will give some definitions and
notation for regular languages together with finite automata. Section 3 provides a method
of obtaining a language from the Hénon and the Lozi maps, and calculating its GC. In
section 4, the results of calculation are presented and their implications are discussed. Finally
in section 5, we summarize the paper and mention some open and related problems.
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Figure 1. (a) Example of a non-deterministic finite automaton. (b) Example of a deterministic
finite automaton. In each figure, a node of a graph represents a state. A transition between two
states is possible if an input symbol is the same as the one labelled on an arrow connecting the
two states. The initial state is q0, and the final states are denoted by double circles. In (a), if the
initial input is 1, the transition from q0 is allowed to either q1 or q2, and if the initial input is 0,
the transition is allowed only to q3.

2. Regular-language complexity

In this section, we briefly explain some basics of regular languages and finite automata, and
introduce the definition of regular-language complexity. For the readers who are interested in
the details, a standard textbook [25] is helpful.

A language is a set of finite strings. In this paper, we hereafter refer to a finite string by
the word ‘string’, and an infinite one by ‘sequence’. A regular language is a set of strings
expressed by three kinds of operations:


concatenation : L1L2 := {xy | x ∈ L1, y ∈ L2}
∗ : L∗ := ⋃∞

j=0 Lj

+ : L1 + L2 := L1 ∪ L2

where Lj is the j -fold concatenation of L. For example, the set of all strings over the alphabet
� = {0, 1} is a regular language expressed as L = (0 + 1)∗. This is equal to �∗. The string
of length 0 is denoted by ε.

A regular language is closely related to a finite automaton. A finite automaton is a
mathematical model M = (Q,�, δ, q0, F ), which represents transitions between states with
a certain input string:



Q = {q0, q1, . . . , qn} : set of states
� = {0, 1} : input alphabet
δ : Q × �∗ → Q : transition function
q0 ∈ Q : initial state
F ⊂ Q : set of final states

Here δ(q, x) denotes a function of a state q ∈ Q and an input string x ∈ �∗.
We say that a finite automaton is a deterministic finite automaton (DFA) if the transition

function δ(q, x) is uniquely determined by the present state q and an initial input string x, and
a non-deterministic finite automaton (NFA) otherwise. Figure 1 shows examples of a DFA
and a NFA.

For a finite automaton M = (Q,�, δ, q0, F ) and a string x ∈ �∗, if δ(q0, x) ∈ F , then
we say that x is accepted by M. For a NFA, it suffices that there exists a transition by which the
NFA reaches one of the final states among the possible ones with an input. The set of strings

L(M) = {x ∈ �∗ | δ(q0, x) ∈ F }
is the language accepted by M.
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It is equivalent that a language L is regular and that L is accepted by a finite automaton.
That is, for any regular language, there exist a NFA and a DFA accepting it, and a language
accepted by a NFA or a DFA is regular [25]. For example, figures 1(a) and (b) are a NFA and
a DFA accepting L = 1(0 + 01)∗ (i.e. a language without consecutive 1s), respectively.

In general, there may exist several different automata representing the same language.
However, as is known as the Myhill–Nerode theorem, there exists a unique DFA up to
permutation of labelling such that the number of states is minimal among DFAs accepting
a given regular language. Therefore, minimal DFAs can be used for comparing different
languages. A concrete algorithm minimizing a redundant DFA is presented in [25].

Now we can state the definition of complexity proposed by Wolfram [2]. The complexity
of a regular language L is defined as

C(L) := log N(L)

where N(L) is the number of states of the minimal DFA accepting L. We call C(L) the
grammatical complexity (GC) of the language L.

3. Method

In this section, we first explain how to obtain the symbolic dynamics for the area-preserving
Hénon map. Then we describe the construction of a finite automaton accepting the language
made of it.

3.1. Calculation of transition rules

A crucial task to apply the theory of formal languages to a dynamical system is to find a proper
discrete coding. This can be achieved if there exists a symbolic dynamics which is conjugate
or semi-conjugate to the original dynamics. For a one-dimensional unimodal map, the critical
point divides the interval, and a symbol is assigned to each subinterval thus determined.
Furthermore, as is well known as the Milnor–Thurston’s kneading theory, the itinerary of the
critical point controls admissibility of the orbits [26].

A straightforward extension of the kneading theory to two-dimensional maps cannot
be made due to the lack of critical points, but a possibility of analogous construction has
been explored by Cvitanović et al [15, 16]. An idea of pruning is first to suppose the two-
dimensional symbol plane for the horseshoe dynamics, and then to observe which orbits
become nonadmissible in the dynamics as the system parameter is varied. Nonadmissible
orbits are considered pruned from the horseshoe symbol plane. The forbidden regions in the
symbol plane are called pruned regions. Note that the pruned regions cannot be determined
uniquely because, by definition, forward and backward iterations of some pruned region yield
other pruned regions. So it may have redundancy unless additional conditions are specified.
The primary pruned region is introduced to avoid such ambiguity, and its border is the pruning
front. A spirit of the pruning front is to completely specify the admissible orbits in the
symbol plane. It has indeed been expressed as the pruning front conjecture, which states
that all forbidden orbits are specified solely by the pruning front and that there are no other
independent pruning mechanisms [15, 16].

An idea of pruning would be certainly natural and has been formulated even rigorously
[17–19], but we need a concrete algorithm to provide the pruning front for a given map in
order to perform an explicit computation of the grammatical complexity introduced above. A
recipe proposed for the Lozi map was the first complete solution to such a programme [17].
For an arbitrary parameter value of the Lozi map, the pruning front can explicitly be written
using the piecewise linearity of the Lozi map.
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Figure 2. The stable and unstable manifolds for the area-preserving Hénon map at a = 5.4 and
the pruned regions. The primary pruned region is coloured black, and its forward and backward
images are grey.

On the other hand, it would be difficult to find such a simple algorithm for the Hénon map.
An attempt was made in our previous paper to give a prescription for constructing the pruned
regions of the area-preserving Hénon map [22]. Our algorithm assumes hyperbolicity of the
map, otherwise the procedure will not stop within finitely many steps. Crucial information
required in the construction is a bifurcation diagram of homoclinic orbits on a fundamental
segment of the stable (or unstable) manifold. Our basic idea is to convert information of
homoclinic points aligned on a fundamental segment into that of the two-dimensional symbol
plane in which the pruning front is drawn. A bifurcation diagram—that is, information
describing in what order homoclinic points on a fundamental segment disappear as a function
of the system parameter—is obtained by continuation of orbits from the horseshoe limit using,
for example, a technique developed in [27, 28].

The numerical studies made in [23, 24] strongly suggest that a set of parameter values for
which the Hénon map has hyperbolic structures has a positive Lebesgue measure. Since our
algorithm terminates within finitely many steps for hyperbolic parameter intervals, it has also
been indicated that there exist infinitely many intervals to which our algorithm can be applied.
Figure 2(a) shows the stable and unstable manifolds for the area-preserving Hénon map at
a = 5.4, and (b) shows the corresponding pruned regions constructed using our algorithm.
This parameter value is in the longest hyperbolic interval, which is henceforth called the
longest plateau.

On the other hand, as implied in [24], a set of parameter values for which the system
is not hyperbolic also has a positive Lebesgue measure. Our algorithm may not terminate
and precise primary pruned regions cannot be determined in such cases. In the following,
we will cope with non-hyperbolic cases by calculating approximate pruned regions. They are
obtained by introducing a certain resolution in the symbol plane, which means that we limit
the length of forbidden strings and ignore the finer structures of the pruning fronts. Therefore,
the resulting pruned regions and the corresponding automata depend on the size of resolution.
Indeed as observed in the next section, the number of steps of the pruning fronts increases
with the increase of resolution.
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Figure 3. A non-deterministic finite automaton accepting L̄.

3.2. Conversion of a transition rule into a finite automaton

Now taking the longest plateau (a � 5.4), we present an example of actual procedures by
which a finite automaton accepting all the admissible strings is constructed.

The forbidden strings of the longest plateau are 0010100 and 0011100, which correspond
to the blocks shown in figure 2. Let L be the set of all strings which do not contain these
forbidden ones. The complement L̄ = �∗\L is easily obtained, and is expressed as

L̄ = (0 + 1)∗(0010100 + 0011100)(0 + 1)∗.

This is regular, and is accepted by the NFA shown in figure 3. This NFA accepts all sequences
which contain the forbidden strings. So it does not depend on how to decide the initial digit
(i.e. the position of ‘·’ in a symbol sequence) as an input, although we consider the set of
doubly infinite sequences for a two-dimensional map.

If a language L is regular, then the complement L̄ = �∗\L is also regular [25].
Correspondingly for automata, if M = (Q,�, δ, q0, F ) is a DFA accepting L, then
M ′ = (Q,�, δ, q0,Q\F) is a DFA accepting L̄. This is because x ∈ L̄ and δ(q0, x) ∈ Q\F
are equivalent. Thus, we first construct a DFA accepting L̄, and then exchange the roles of the
final states and the others.

We denote the NFA in figure 3 by M = (Q,�, δ, q0, F ). Now we construct a DFA
M ′ = (Q′, �, δ′, q ′

0, F
′) equivalent to M. First, the initial state is set as q ′

0 = {q0}. Since it
is possible to move from q0 to either q0 or q1 with an input 0, let δ′(q0, 0) = {q0, q1}. This
is one of the elements of Q′. Note that Q′ consists of the subsets of Q. Next, since the NFA
can move from q0 to {q0, q1} and from q1 to q2, respectively, with 0, let the state to which
M ′ moves from {q0, q1} be {q0, q1, q2}. That is, to complete Q′ it suffices to add (the sets of)
states which can be reached from q0 one after another. The set of the final states F ′ consists
of all the elements of Q′ including one of the final states of M. If all the nodes have two arcs
labelled 0 and 1, then the DFA M ′, which is shown in figure 4, is completed.

To calculate the GC, we have to reduce M ′ to the minimal DFA. Note that all the accessible
states from {q0, q1, q2, q7} are the final states of M ′, since they contain the final state q7 of the
NFA. That is, once it reaches {q0, q1, q2, q7}, all strings are accepted by this DFA, no matter
what the subsequent input symbols are. Therefore, it is unnecessary to distinguish these final
states. Performing the reduction algorithm of [25] confirms that there is no other state which
can be reduced besides these states. Hence, the minimal DFA equivalent to M ′ is the one
shown in figure 5.

Exchanging the roles of the final states and the others gives the minimal DFA accepting L.
If a string containing one of the forbidden strings 0010100 and 0011100 is given as an input,
the minimal DFA reaches the state {q0, q1, q2, q7}, implying that the string is never accepted.
In other words, admissible symbol sequences on the non-wandering set of the Hénon map do
not change the state of the DFA to {q0, q1, q2, q7}. We let the logarithm of the number of
states other than this one be the GC. Consequently, for the longest plateau, C(L) = log 8. The
whole procedure is summarized as shown in figure 6.
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Figure 4. A deterministic finite automaton accepting L̄.
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minimal DFA 2

. . .
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Figure 6. Procedure for obtaining the grammatical complexity. The notation NFA means a
non-deterministic finite automaton accepting L̄, and so on.

Now we should discuss whether or not the GC obtained by this procedure described
surely characterizes a given dynamical system. This is because a primary pruned region can
be expressed by apparently different sets of forbidden strings, and therefore can give different
automata. For example, if the forbidden string is 001, it can be expressed by two strings 0010
and 0011. As shown in figure 7, several different NFAs are constructed depending on the
difference of forbidden strings. It should be noted that these NFAs are different in the ordinary
sense: for example, the lower automaton in figure 7 does not accept 001, even though this is
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Figure 7. Two equivalent non-deterministic finite automata under the condition that infinite
sequences are inputed.

a forbidden string. However, since the length of input sequences considered here is infinite,
these NFAs represent the same dynamics. So here we regard these automata as equivalent.
After a NFA is obtained, converting it into the minimal DFA is performed uniquely. In general,
a minimal DFA may have states reached only once. Since we consider an infinite sequence
for an input, we again remove these states from the minimal DFA. We further remove the final
states of the DFA accepting L̄. (In case of figure 5, the final state is just {q0, q1, q2, q7}.) This
is because the sequences by which the DFA reaches those states are not admissible. We call
these operations ‘pruning of automata’. For all the examples studied so far, the pruned DFA is
uniquely obtained from different NFAs, and no exceptions have been found. So we conjecture
that the pruned DFA describes the dynamics on the non-wandering set of the system, and that
it does not depend on which NFA we take at the first step. If this is true, the pruned DFA gives
the GC of a system and certainly characterizes it.

The transition rule of the pruned DFA can be written in the form of a matrix. As for the
longest plateau of the area-preserving Hénon map, this is

q
0

q
0
q

1

q
0
q

1
q

2

q
0
q

3

q
0
q

1
q

4

q
0
q

4

q
0
q

5

q
0
q

1
q

6




q0 1 1 0 0 0 0 0 0
q0q1 1 0 1 0 0 0 0 0

q0q1q2 0 0 1 1 0 0 0 0
q0q3 0 0 0 0 1 1 0 0

q0q1q4 0 0 1 0 0 0 1 0
q0q4 0 1 0 0 0 0 1 0
q0q5 1 0 0 0 0 0 0 1

q0q1q6 1 0 0 0 0 0 0 0




.

This just represents a structure matrix of the map, and the number of states of the pruned DFA
also gives the order of the minimal structure matrix.

4. Results

Here we present the results of our numerical calculations. In figure 8, we plot the GC for the
Hénon map as a function of the system parameter a. We only consider the area-preserving
case, so the other parameter is taken as b = −1 throughout the following calculations. Each
figure is a magnification of the upper one. Above a = 5.699 . . . at which the first tangency
between the stable and unstable manifolds occurs [27], the symbolic dynamics forms the
binary full shift.
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Table 1. Parameter values in the hyperbolic intervals where the Hénon map and the Lozi map
give the pruning fronts shown in figure 11, the forbidden strings, and the grammatical complexity.
A symbol X stands for both 0 and 1.

Parameter
Forbidden Grammatical

Labels Hénon map Lozi map strings complexity

a1 5.4 – 021X102 log 8
a2 5.65 – 031X103 log 10
a3 5.693 2.875 041X104 log 12
a4 5.6983 2.9015 051X105 log 14

· · · · · ·
b1 5.59 2.69 021X103, 031X1021 log 15
b2 5.684 2.832 031X104, 041X1031 log 18
b3 5.697 2.886 041X105, 051X1041 log 21
b4 5.6988 2.9057 051X106, 061X1051 log 24

· · · · · ·

As mentioned in the previous section, the order of the minimal structure matrix may
not be finite when the system is not hyperbolic. We can see that this is indeed the
case: according to the increase of resolution, that is, the increase of length of strings used to
represent the pruned regions, the GC gradually becomes larger, which implies that it does not
converge. In each figure, we only report three different resolution cases, but all the results
thus examined tell us that this is a generic feature in non-hyperbolic situations. We can see, in
addition to such divergent intervals, that there are many parameter intervals in which the GC
already converges. Such intervals correspond to the ones in which the system has hyperbolic
structures [23, 24].

As shown in figure 9, qualitatively the same behaviour is found for the Lozi map. We have
performed the calculation of the GC by the same method as that used for the Hénon map, and
also compared the result with that based on the method using the continued fractions [17]. We
see from figure 10 that both give almost the same results, although there is a slight difference
in the intervals where the GC does not seem to converge. This confirms the validity of our
present calculations.

In either case, the figures demonstrate that, as a whole, the GC gradually increases as the
parameter decreases from the first tangency point, and self-similar peaks are clearly noticed.
In particular, in the vicinity of the first tangency point, they are remarkable. We can explain the
reason for the appearance of such self-similarity by extracting the pruning fronts for a series
of plateaux that are located at the same positions in each magnified figure. For the Hénon
map, similar pruning fronts such as figures 11(a) and (b) are observed; these are sequences
asymptotic to the first tangency point. These pruning fronts are obtained using the procedure
of [22].

On the other hand, for the Lozi map, though the largest two pruning fronts in figure 11(a)
are missing, the others are found. Such a difference may exist, because the shapes of the
pruning fronts depend on the ordering of bifurcations and it is connected to the system-
specific combinatorial properties of a given map. The two series shown in the figures are
the simplest possible ones which we can easily extract manually, but it is natural to expect
that self-similar peaks reflect such underlying structures of the primary pruned regions. Table
1 shows the parameter values at which the pruning fronts in figure 11 appear, together with
the forbidden strings and the corresponding GC.
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Figure 9. Grammatical complexity for the area-preserving Lozi map.
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Figure 10. Comparison between the result using the continued fractions [17] and that using our
pruning algorithm [22]. Although the latter, shifted by two to distinguish the results, tends to be
slightly smaller than the former, they coincide at relatively long plateaux. The maximal forbidden
strings taken in the calculations is 18.

a1 a2a3 a4 b1 b3 b4 b2
000001.
100001.

110001.
010001.

011001.
111001.
101001.
001001.

001101.
101101. .110111
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.110011

.110001
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.110111
.110110

.110010
.110011

.110001
.110000
.010000
.010001

.010011
.010010

.010110
.010111

(b)(a)

Figure 11. Similar pruning fronts observed near the first tangency point. The Hénon map has all
the fronts in both (a) and (b), while the Lozi map does not have (a1) and (a2). The labels in the
figure correspond to those in table 1.

5. Conclusion and discussion

In this paper, we have investigated the grammatical complexity (GC) of the symbol sequences
generated from the Hénon and the Lozi maps. Explicit algorithms to give the pruning fronts
enabled us to determine a minimal deterministic finite automaton (DFA) and thus to compute
the GC. For both maps, there exist ranges of the system parameter where the horseshoe
dynamics is realized. The GC in these regions is trivially zero. However, when the horseshoe
structure breaks, the invariant sets of both maps become quite complicated. We are interested
in how the complexity behaves as a function of the system parameter. What we have found
is that there exist remarkable self-similar peak structures, whereas a gradual increase of the
GC is observed as a whole. By presenting several series of simple pruning fronts, we have
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000001.
100001.

110001.
010001.

011001.
111001.
101001.
001001.

001101.
101101. .110111

.110110
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.110000
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.010110
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  1001X10011
11001X10010

  01001X100101
101001X100100

  001001X1001001
1001001X1001000

  0*1001X10010*1
10*1001X10010*

. . .

Figure 12. Pruning front for the upper endpoint of the longest plateau of the area-preserving
Hénon map, a = 5.537 . . . . There exists a homoclinic tangency between (0∞1001 · X10010∞)

denoted by circles. However, the primary pruned region, which is the block 001 · X100 other than
these two points, is specified by a regular expression.

argued that the origin of self-similar peaks can be attributed to similar-shaped primary pruned
regions.

Obviously, hyperbolicity of the dynamics makes a language regular, and then the GC takes
a finite value. On the other hand, one may expect that the GC diverges for non-hyperbolic
parameter intervals, but it is not so evident. This is because a language can be regular
even if a homoclinic tangency exists. For example, at the upper endpoint of the longest
plateau of the area-preserving Hénon map, a = 5.537 . . . , two homoclinic points denoted by
(0∞1001 · X10010∞) (X = 0, 1) degenerate. Note that they are the last pruned points in the
block 001 ·X100. Nevertheless, as shown in figure 12, we can easily specify the corresponding
pruned region only by identifying the missing points as

001X1000 + 0001X1001 + 0∗1001X10010∗1 + 10∗1001X10010∗.

The language at this parameter value is obviously regular.
According to the works of Xie and Wang [10, 11], the language generated from a unimodal

map is regular if and only if the kneading sequence of the map is either periodic or eventually
periodic. Furthermore, Xie et al conjecture that a unimodal map may not generate a proper
context-free language [12, 13]. A similar question arises for two-dimensional maps. It is clear
that one of the sufficient conditions for two-dimensional maps is hyperbolicity. However,
as noted in a brief argument made above, the necessary conditions are far from trivial.
For non-hyperbolic parameter regions, as pointed out in [15], the pruning fronts may have
infinitely many fractal steps, unlike those with finitely many steps (see for example figure 11).
Nevertheless, the language can still be regular, because one has a finite automaton representing
such a pruning front if the rule to construct self-similar steps is explicitly specified. Here we
assume that there are ranges of the system parameter in which self-similar pruning fronts are
realized, but checking this assumption itself is not a trivial issue. In the area-preserving case, a
recent result is suggestive of our problem: the Hénon map cannot have finite-to-one symbolic
representation by subshift if there exists an elliptic point [29]. It is interesting to study whether
or not such a situation is beyond the category of regular languages.

Finally, we remark on the relation of self-similar peaks found here to the fractal diffusion
coefficient discovered in deterministic diffusion [30–32]. In [30, 31], parameter-dependent
deterministic diffusion in a one-dimensional array of a piecewise linear map has been
studied. The authors found that the diffusion coefficient exhibits a fractal structure as a
function of the control parameter. They have analysed the origin by developing a way to
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calculate the parameter-dependent Markov partitions and to solve eigenvalue problems for the
corresponding transition matrices. In the map considered there, the slope of the map function
is greater than 1, so the system is always hyperbolic. An interesting fact is that the diffusion
coefficient, which is a typical macroscopic quantity, depends sensitively on the change of the
control parameter. Since the diffusion coefficient can be connected with the eigenvalue of
transition matrices, it is natural to expect that underlying Markov partitions change sensitively
as a function of the control parameter.

Similar fractal structures are also observed for two-dimensional billiard problems [32],
where small elliptic islands may be partly responsible for irregular oscillations of the diffusion
coefficient as a function of the energy. The situation is quite analogous to what was found in our
analysis. For the Hénon and the Lozi maps, the shape of the primary pruned region, which gives
the corresponding Markov partitions as well, changes in a self-similar manner. Although we
have not calculated macroscopic quantities, the underlying mechanism generating self-similar
patterns must be common.
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